Der Würfel 5. Klasse
Der Würfel ist die Grundeinheit für die Berechnung von
Rauminhalten (Volumen)
Ein Würfel hat 12 gleich lange Seiten, auch Kanten
1 cm genannt.
Der „Einheitswürfel“ mit der Kantenlänge 1 cm hat
1 cm 1 cm den Rauminhalt 1 cm³ (1 Kubikzentimeter).
Der Würfel mit der Seitenlänge 2 cm hat lässt sich in 2
Schichten u je 4 Würfeln aufteilen.
Er besteht also aus:
2 · (2 · 2) cm³ = 8 cm ³
Der Rauminhalt (V) eines Würfels berechnet sich aus dem Produkt:
Seite mal Seite mal Seite
V = a · a · a = a ³
Die Summe aller Außenkanten eines Körpers heißt Oberfläche (O)
Stell dir dazu einen Würfel aus Papier vor. Wenn du den Würfel
aufschneidest, liegt die Fläche des Würfels vor dir.
1 cm²
Die Formel für die Oberfläche (O) lautet:
O = 6 · a · a = 6 · a²
Der Würfel ist die Grundeinheit für die Berechnung von
Rauminhalten (Volumen)
Ein Würfel hat 12 gleich lange Seiten, auch Kanten
1 cm genannt.
Der „Einheitswürfel“ mit der Kantenlänge 1 cm hat
1 cm 1 cm den Rauminhalt 1 cm³ (1 Kubikzentimeter).
Der Würfel mit der Seitenlänge 2 cm hat lässt sich in 2
Schichten u je 4 Würfeln aufteilen.
Er besteht also aus:
2 · (2 · 2) cm³ = 8 cm ³
Der Rauminhalt (V) eines Würfels berechnet sich aus dem Produkt:
Seite mal Seite mal Seite
V = a · a · a = a ³
Die Summe aller Außenkanten eines Körpers heißt Oberfläche (O)
Stell dir dazu einen Würfel aus Papier vor. Wenn du den Würfel
aufschneidest, liegt die Fläche des Würfels vor dir.
1 cm²
Die Formel für die Oberfläche (O) lautet:
O = 6 · a · a = 6 · a²
Der Würfel – Umrechnung Rauminhalte 5. Klasse
Für die Umrechnung von Rauminhalten in eine andere Einheit beachte :
1 cm 10 mm
1 cm = 10 mm
1 cm 10 mm
Ein Zentimeter ist genauso lang wie 10 mm.
Das bedeutet für den Rauminhalt:
1 cm³ = 1 cm · 1 cm · 1 cm = ___ mm · ___ mm · ___ mm = ______ mm³
1 cm³ = __________ mm³
Genauso ergeben sich alle weitern Umwandlungszahlen:
: 1 000 : 1 000 : 1 000
mm³ cm³ dm³ m³
· 1 000 · 1 000 · 1 000
1 cm³ = 1 ml (Milliliter) Maßeinheit bei Flüssigkeiten
1 dm³ = 1 l (Liter)
Rechne die Rauminhalte in die angegebene Einheit um:
1 954 mm³ = _________ cm³
1,843 dm³ = _________ cm³
21 689 dm³ = _________ m³
5,32 m³ = _________ dm³
36 l = _________ cm³
37 624 mm³ = _________ ml
Für die Umrechnung von Rauminhalten in eine andere Einheit beachte :
1 cm 10 mm
1 cm = 10 mm
1 cm 10 mm
Ein Zentimeter ist genauso lang wie 10 mm.
Das bedeutet für den Rauminhalt:
1 cm³ = 1 cm · 1 cm · 1 cm = ___ mm · ___ mm · ___ mm = ______ mm³
1 cm³ = __________ mm³
Genauso ergeben sich alle weitern Umwandlungszahlen:
: 1 000 : 1 000 : 1 000
mm³ cm³ dm³ m³
· 1 000 · 1 000 · 1 000
1 cm³ = 1 ml (Milliliter) Maßeinheit bei Flüssigkeiten
1 dm³ = 1 l (Liter)
Rechne die Rauminhalte in die angegebene Einheit um:
1 954 mm³ = _________ cm³
1,843 dm³ = _________ cm³
21 689 dm³ = _________ m³
5,32 m³ = _________ dm³
36 l = _________ cm³
37 624 mm³ = _________ ml
Der Würfel – Umrechnung Rauminhalte Lösung
Für die Umrechnung von Rauminhalten in eine andere Einheit beachte :
1 cm 10 mm
1 cm = 10 mm
1 cm 10 mm
Ein Zentimeter ist genauso lang wie 10 mm.
Das bedeutet für den Rauminhalt:
1 cm³ = 1 cm · 1 cm · 1 cm = 10 mm · 10 mm · 10 mm = 1 000 mm³
1 cm³ = 1 000 mm³
Genauso ergeben sich alle weitern Umwandlungszahlen:
: 1 000 : 1 000 : 1 000
mm³ cm³ dm³ m³
· 1 000 · 1 000 · 1 000
1 cm³ = 1 ml (Milliliter) Maßeinheit bei Flüssigkeiten
1 dm³ = 1 l (Liter)
Rechne die Rauminhalte in die angegebene Einheit um:
1 954 mm³ = 1,954 cm³
1,843 dm³ = 1 843 cm³
21 689 dm³ = 21,689 m³
5,32 m³ = 5 320 dm³
36 l = 36 000 cm³
37 624 mm³ = 37,624 ml
Für die Umrechnung von Rauminhalten in eine andere Einheit beachte :
1 cm 10 mm
1 cm = 10 mm
1 cm 10 mm
Ein Zentimeter ist genauso lang wie 10 mm.
Das bedeutet für den Rauminhalt:
1 cm³ = 1 cm · 1 cm · 1 cm = 10 mm · 10 mm · 10 mm = 1 000 mm³
1 cm³ = 1 000 mm³
Genauso ergeben sich alle weitern Umwandlungszahlen:
: 1 000 : 1 000 : 1 000
mm³ cm³ dm³ m³
· 1 000 · 1 000 · 1 000
1 cm³ = 1 ml (Milliliter) Maßeinheit bei Flüssigkeiten
1 dm³ = 1 l (Liter)
Rechne die Rauminhalte in die angegebene Einheit um:
1 954 mm³ = 1,954 cm³
1,843 dm³ = 1 843 cm³
21 689 dm³ = 21,689 m³
5,32 m³ = 5 320 dm³
36 l = 36 000 cm³
37 624 mm³ = 37,624 ml
Rauminhalte 5. Klasse
1. Wie viel Liter Milch passen in einen Würfel mit der Seitenlänge 77 cm?
2. Wie viel Quadratzentimeter Pappe benötigt man, um einen
würfelförmigen Karton mit der Seitenlänge 9,1 dm herzustellen?
Wie groß ist der Rauminhalt des Würfels?
3. Ein Bleiwürfel hat eine Kantenlänge von 12 cm. Blei wiegt etwa 11 g pro
cm³.
a) Wie groß ist der Rauminhalt des Würfels?
b) Wie schwer ist der Würfel?
4. Jonas möchte einen Würfel aus Draht basteln. Er besitzt einen 168 cm
langen Draht. Welche Kantenlänge hat der Würfel höchstens?
(Tipp: Überlege, wie viele Kanten ein Würfel hat.)
1. Wie viel Liter Milch passen in einen Würfel mit der Seitenlänge 77 cm?
2. Wie viel Quadratzentimeter Pappe benötigt man, um einen
würfelförmigen Karton mit der Seitenlänge 9,1 dm herzustellen?
Wie groß ist der Rauminhalt des Würfels?
3. Ein Bleiwürfel hat eine Kantenlänge von 12 cm. Blei wiegt etwa 11 g pro
cm³.
a) Wie groß ist der Rauminhalt des Würfels?
b) Wie schwer ist der Würfel?
4. Jonas möchte einen Würfel aus Draht basteln. Er besitzt einen 168 cm
langen Draht. Welche Kantenlänge hat der Würfel höchstens?
(Tipp: Überlege, wie viele Kanten ein Würfel hat.)
Rauminhalte 5. Klasse
1. Wie viel Liter Milch passen in einen Würfel mit der Seitenlänge 77 cm?
V = 77 · 77 · 77 cm³ = 456 533 cm³ = 456,533 dm³ = 456,533 l
Es passen 456,533 l Milch in den Würfel.
2. Wie viel Quadratzentimeter Pappe benötigt man, um einen
würfelförmigen Karton mit der Seitenlänge 9,1 dm herzustellen?
Wie groß ist der Rauminhalt des Würfels?
O = 6 · 9,1 dm · 9,1 dm = 496,86 dm²
Man braucht 49 686 cm² Pappe.
V = 9,1 dm · 9,1 dm · 9,1 dm = 753,571 dm³
Der Rauminhalt beträgt 753,571 dm³.
3. Ein Bleiwürfel hat eine Kantenlänge von 12 cm. Blei wiegt etwa 11 g pro
cm³.
a) Wie groß ist der Rauminhalt des Würfels?
V = 12 cm · 12 cm · 12 cm = 1728 cm³
Der Würfel hat einen Rauminhalt von 1728 cm³.
b) Wie schwer ist der Würfel?
1728 · 11 g = 19 008 g = 19 kg 8 g
Der Bleiwürfel wiegt 19 kg 8 g.
4. Jonas möchte einen Würfel aus Draht basteln. Er besitzt einen 168 cm
langen Draht. Welche Kantenlänge hat der Würfel höchstens?
(Tipp: Überlege, wie viele Kanten ein Würfel hat.)
Ein Würfel hat 12 Kanten.
168 cm : 12 = 14 cm
Der Würfel hat höchstens eine Kantenlänge von 14 cm.
Na? Alles richtig?
1. Wie viel Liter Milch passen in einen Würfel mit der Seitenlänge 77 cm?
V = 77 · 77 · 77 cm³ = 456 533 cm³ = 456,533 dm³ = 456,533 l
Es passen 456,533 l Milch in den Würfel.
2. Wie viel Quadratzentimeter Pappe benötigt man, um einen
würfelförmigen Karton mit der Seitenlänge 9,1 dm herzustellen?
Wie groß ist der Rauminhalt des Würfels?
O = 6 · 9,1 dm · 9,1 dm = 496,86 dm²
Man braucht 49 686 cm² Pappe.
V = 9,1 dm · 9,1 dm · 9,1 dm = 753,571 dm³
Der Rauminhalt beträgt 753,571 dm³.
3. Ein Bleiwürfel hat eine Kantenlänge von 12 cm. Blei wiegt etwa 11 g pro
cm³.
a) Wie groß ist der Rauminhalt des Würfels?
V = 12 cm · 12 cm · 12 cm = 1728 cm³
Der Würfel hat einen Rauminhalt von 1728 cm³.
b) Wie schwer ist der Würfel?
1728 · 11 g = 19 008 g = 19 kg 8 g
Der Bleiwürfel wiegt 19 kg 8 g.
4. Jonas möchte einen Würfel aus Draht basteln. Er besitzt einen 168 cm
langen Draht. Welche Kantenlänge hat der Würfel höchstens?
(Tipp: Überlege, wie viele Kanten ein Würfel hat.)
Ein Würfel hat 12 Kanten.
168 cm : 12 = 14 cm
Der Würfel hat höchstens eine Kantenlänge von 14 cm.
Na? Alles richtig?